Stability conditions and criteria for fractional order linear time - invariant systems 分?jǐn)?shù)階線性系統(tǒng)的內(nèi)部和外部穩(wěn)定性研究
Wavelet series - based identification of infinite - dimensional , linear and time - invariant systems 用小波級(jí)數(shù)辨識(shí)無窮維線性時(shí)不變系統(tǒng)
The state - space representation and the transfer function representation of fractional order linear time - invariant systems are introduced 摘要介紹了分?jǐn)?shù)階線性定常系統(tǒng)的狀態(tài)方程描述和傳遞函數(shù)描述。
The modeling , analysis and control of networked control systems are studied in this dissertation when the controlled process is linear time - invariant system 本文基于線性時(shí)不變的被控對象,研究了網(wǎng)絡(luò)控制系統(tǒng)的建模、分析與控制問題。
Internal and external stability conditions for fractional order linear time - invariant systems are given using laplace transform and residue theorem 運(yùn)用拉普拉斯變換和留數(shù)定理,給出并證明了分?jǐn)?shù)階線性定常系統(tǒng)的內(nèi)部和外部穩(wěn)定性條件,并討論了其相互關(guān)系。
For a large scale of linear time - invariant systems , linear time - varying systems and nonlinear systems , many scholars proposed a series of new schemes 針對一大類線性時(shí)不變系統(tǒng),線性時(shí)變系統(tǒng)及非線性系統(tǒng),許多學(xué)者利用backstpping方法提出了一系列新的非線性控制器設(shè)計(jì)方案
Abstract : the paper shows the relative deformation function of the cam mechanism with a roller follower as a linear time - invariant system , and gives the detail about the response limitation for the dynamic design and modification of cam mechanisms . an example demonstrates this approach can improve the flexible cam mechanisms 文摘:以滾子從動(dòng)件平面凸輪機(jī)構(gòu)為分析對象,提出了相對變形函數(shù)這一新概念,并從理論上對其進(jìn)行了研究,最后借助于一凸輪機(jī)構(gòu)在不同參數(shù)下其擺臂最大相對變形量的數(shù)值計(jì)算過程與結(jié)果,闡述了基于該理論的凸輪機(jī)構(gòu)動(dòng)態(tài)設(shè)計(jì)與修改的具體實(shí)現(xiàn)步驟與方法。
Based on the lyapunov approach , my main results are obtained as follows : 1 . the decoupling of the linear time - invariant system and linear time - delay system are discussed . for linear systems with norm - bounded uncertainties , conditions for energy decoupling with input transformation or both state feedback and input transformation are given in terms of linear matrix inequalities 討論了線性定常系統(tǒng)和時(shí)滯系統(tǒng)的能量解耦,研究了具有范數(shù)有界不確定參數(shù)的線性不確定系統(tǒng),給出了不確定線性系統(tǒng)僅具有輸入變換、同時(shí)具有狀態(tài)反饋和輸入變換情況下的能量解耦方法,結(jié)果以線性矩陣不等式的形式給出。
百科解釋
A time-invariant (TIV) system is one whose output does not depend explicitly on time.